
Verification of Functional Safety for
an Automotive AI Processor

Mihajlo Katona PhD, Veriest Solutions

www.VeriestS.com

Veriest Solutions introduction

• ASIC Engineering services company, founded in 2007

• Headquartered in Israel, 4 additional sites in Europe

• 120+ engineers

• Customers in US, Europe and Israel:

• Tier1 international Semi companies

• Start-up companies

• IP& EDA companies

• System companies

Functional
Verification

Formal
Verification

IP/VIP
Design

FPGA Design

Front-end
design

Firmware/
Embedded SW

Some of our professional services

Copyright Veriest 2021

CEVA DSP IP architecture

The methodology described in this workshop was developed during

projects to verify different IPs at CEVA, a leading licensor of wireless

connectivity and smart sensing technologies.

• NeuPro - AI Processor Architecture for Imaging & Computer Vision

• SensorPro - High Performance Sensor Hub DSP Architecture

• I'd like to thank Mr. Noam Meser,

Director of VLSI Verification & Infrastructure at CEVA,

for his contributions to this presentation

Copyright Veriest 2021

SensPro – Industry’s First High Performance
Sensor Hub DSP

Single and
Multi-Sensor

Contextual Aware
Designs Industry Leading

Performance per
Watt

Highly Parallel
Processing

High Performance
Single and Half

Precision
Floating pointMature NN/CV

SW Infra & Tools

Modular &
Scalable

SLAM, Radar, Sound
And More

Computer Vision
Deep Neural Network

Inferencing

CEVA Proprietary Information 4CEVA Proprietary Information

Wireless Connectivity Smart Sensing

CEVA IP Technologies

Powered
by

Cellular
5G DSP-based platforms

for smartphones, RAN
and cellular IoT

IoT Connectivity
Comprehensive platforms for

Bluetooth and Wi-Fi

Microphone
Audio DSPs, SW technologies, speech
recognition, noise reduction, audio AI

Camera
Vision DSPs
DNN accelerators
CDNN compiler for NN inferencing

IMU
Software & algorithms
Sensor fusion & management
Activity classifiers

CEVA Proprietary Information 5CEVA Proprietary Information

SensPro – Industry’s First High
Performance Sensor Hub DSP

Up to x8
Performance

Improvement*

30%
Code Size
Savings*

30% Energy

Savings*

20%
Frequency
Increase*

Single and
Multi-Sensor

Contextual Aware
Designs

Industry Leading
Performance per Watt

Highly Parallel
Processing

High Performance Single
and Half Precision

Floating point

Mature NN/CV
SW Infra & Tools

Modular &
Scalable

SLAM, Radar, Sound
And More

Computer Vision
Deep Neural Network

Inferencing

Versus CEVA-XM6 Vision DSP*

Agenda

• Functional Safety Introduction

• Standardization

• Error Correction Schemes

• Functional Verification and Functional Safety Verification Challenge

• Verification Methodology for Functional Safety Verification

• Tools

• Procedures

Agenda

• Functional Safety Introduction

• Standardization

• Error Correction Schemes

• Functional Verification and Functional Safety Verification Challenge

• Verification Methodology for Functional Safety Verification

• Tools

• Procedures

What is Functional Safety ?

It is about safe machinery without causing any risk to human life

Passive safety system

What is Functional Safety ?

• Functional safety covers an active system

that has safety mechanisms in place.

• These mechanisms are activities or technical solutions

to detect, avoid and control failures or mitigate their

harmful effects.

• The safety mechanism is either able to

switch or maintain the item in a safe state

or able to alert the user to take control

of the effect of the failure
If at any time these machines fail to perform the

intended function, there could be damages.

ISO 26262 Failure Clasification

• Systematic Failures (Pre-Production)

induced in a deterministic way during development, manufacturing,

or maintenance (process issues)

for example, incorrect specification or manufacturing defects

• Random Failures (Production)

random defects, process or usage conditions such as radiation or silicone wear out

• permanent faults (e.g., stuck-at faults)

• transient faults (e.g., single-event-upsets or soft errors)

ISO 26262 target is to

prevent/avoid systematic failures

ISO 26262 target is to

control random failures

The Verification Problem

• State of the art Functional Verification Methodology is not

directly supporting verification of random failures within

ISO 26262 requirements for functional safety

• Verification Methodology is required to distinguish functional

safety verification from classical functional verification flow

• Tools new tools, updated verification approached, etc.

• Procedures stricter and well documented

Semiconductor and Functional Safety

• It is all about data storage and data movement through the system

• Electrical or magnetic interference inside hardware system can cause

single bit to spontaneously flip to opposite state

Some statistic: error rates range is from 10-10 to 10-17 error/bit in one hour

Roughly for 1GB of memory in range

from one bit error per hour to one bit error per century

Two main error-detecting codes

Hamming Code

• Invented in 1950 by

Richard Hamming

• Used in computer memory

systems

Cyclic Redundancy Check

• Invented in 1962 by

Wesley Peterson

• Used in Ethernet, USB, wireless,

mobile and many other standards

Hamming (7,4) coding and decoding

4 bit data value is encoded to 7 bit by adding 3 parity bits: X0X1X2X3 → P0P1X0P2X1X2X3

Received 7 bit value is : P0P1X0P2X1X2X3
We do index XOR to get bit position of errored bit

Position
of error

Error S0 S1 S2 (S2S1S0)10

--- none 0 0 0 0

1 P0 1 0 0 1

2 P1 0 1 0 2

3 X0 1 1 0 3

4 P2 0 0 1 4

5 X1 1 0 1 5

6 X2 0 1 1 6

7 X3 1 1 1 7

Syndrome:
S0 = P0  X0  X1  X3
S1 = P1  X0  X2  X3
S2 = P2  X1  X2  X3

Single Error Correction

Single Error Correction

Single Error Correction

Single Error Correction

OK

Error on parity bit, data is not affected

Error on parity bit, data is not affected

Error on parity bit, data is not affected

P0 = X0  X1  X3
P1 = X0  X2  X3
P2 = X1  X2  X3

DED condition is:
• Parity bit is zero
• Sx > 0 (syndrome > 0)

Cyclic Redundancy Check

Generator polynomial for Bluetooth Baseband Packet is g(D) = D16 + D12 + D5 + 1

16-bit LFSR Circuitry: (Linear Feedback Shift Register)

Encodes messages by adding a fixed-length check value, for the purpose of error detection

Specification of a CRC code requires definition of a so-called generator polynomial

Payload Data Check Value (CRC)

Error Correction Schemes Summary

• Background math is quite complex and sophisticated,

but implementation is straight forward

• Everything is based on XOR combinatorial networks and shift registers

• Influence on signal propagation through critical design paths

(pushing timing constraints)

• Area constraints must be considered when safety targets are defined

Agenda

• Functional Safety Introduction

• Standardization

• Error Correction Schemes

• Functional Verification and Functional Safety Verification Challenge

• Verification Methodology for Functional Safety Verification

• Tools

• Procedures

Functional Verification

Design

Under

Verification

(RTL)

Testbench

S
p

e
c

if
ic

a
ti

o
n

Functional Verification

RTL

uArch DesignDesign

interpretation

Verif.

interpretation

Black Box-Verification Approach
using only available interfaces

without any knowledge of the actual implementation of design

Safety V-Model as per ISO 26262

System Definition

Hazards and Risk
Assessment (HARA)

Safety Goal &
Requirements

Functional and Technical
Safety Concepts

Safety Implementation

Safety Verification

Safety Validation

Safety Case,
Audit Assessment

Safety Management
(Production)

Generic AI Processor Structure

PROCESSING
(MAC based)

Input
Memory

Data
Distribution

Post
Processing

Output
Memory

Internal
Memory
Buffer(s)

CONFIGURATION REGISTERS STATUS REGISTERS

Memory ECC Implementation Example

MEM
ECC

Calculation

ECC
Check &

Correction

delay

ADDR

WDATA
ECC

WDATA

ECC

RDATA

ECC ERROR STATUS

RDATA_CORRECTED

Memory ECC Verification Strategy

MEM
ECC

Calculation

ECC
Check &

Correction

delay

ADDR

WDATA
ECC

WDATA

ECC

RDATA

ECC ERROR STATUS

RDATA_CORRECTED

ECC
model

Compare
write

Compare
read

ECC STATUS update

ECC Agent

Passive Components / Checkers

Memory ECC Verification Strategy,
ACTIVE Error Injection

MEM
ECC

Calculation

ECC
Check &

Correction

delay

ADDR

WDATA
ECC

WDATA

ECC

RDATA

ECC ERROR STATUS

RDATA_CORRECTED

ECC
model

Compare
write

Compare
read

ECC STATUS update

ECC Agent
BFM

(constrained random)

Permanent faults Transient faults

ECC
Prediction

Functional Verification Challenge
with Functional Safety

• Error injection inside DUT is required

• White-box approach is required instead of classical black-box

functional verification methodology

• Error reports are good

• Classic verification tree is growing new branch to meet

ISO 26262 requirements with need for white-box error generation

Agenda

• Functional Safety Introduction

• Standardization

• Error Correction Schemes

• Functional Verification and Functional Safety Verification Challenge

• Verification Methodology for Functional Safety Verification

• Tools

• Procedures

Tools For Safety Analysis V-Model

Software

Full IP

Sub-System

Block

Formal

D
U
T

s
I
z
e

Full Random
Mode

Direct
Mode

D
U
T

s
I
z
e

Block Level
(small RTL)

System Level
(Full IP)

Safety UVC Architecture

ECC agent needs to have

1. ECC modeling

2. ECC checkers

3. Error injection

4. Error monitor and predictor

5. Error reporting

6. Recovery flow implementation

DUT

SMP

BFM Collector

Monitor
SEQ

Driver

CFG REG_FILE

AGENT

ENV

FAULT

LIST

Error Injection:
Signal Deposit or Signal Force ?

• Error Injection must be implemented by bit flipping on design side (inside DUT)

• Signals which will be intentionally corrupted from the verification side must be

agreed between design and verification teams

• Recommendation: if possible, target registers not wires/nets

• Nets have a resolution function in Verilog designs,

which resolves a final value when there are

multiple drivers on the net -> wired or

Error Injection:
Signal Deposit or Signal Force ?

Signal deposit

p_smp.psl_fault_litst[0] = a_faulty_value;

Gives a value to a net or register that will
propagate forward. The signal retains the
deposited value until its next scheduled
change

Signal force

force p_smp.psl_fault_litst[0] = a_faulty_value;

Forces a value to a continuous assignments that
will propagate forward. Overrides all other
drivers and stays in effect until replaced with
another force or canceled with release.

Use for Permanent Faults or
for corrupting memory bits

Use for Transient Faults
together with signal release

Example for Transient Fault Injection
task force_error(...);

@(negedge if.clk);

if (a_error_type in [DATA_ERROR, DATA_AND_PARITY_ERROR]) begin

force p_smp.psl_signal_data[a_sig_idx] = a_data_corrupted;

end

if (a_error_type in [PARITY_ERRORS, DATA_AND_PARITY_ERROR]) begin

force p_smp.psl_signal_parity[a_sig_idx] = a_parity_corrupted;

end

endtask : force_error

task release_error(...);

@(posedge if.clk); // skip next rising edge, wait for signal force

#(CLK_PERIOD/3); // avoid race conditions with monitor,

// release signals after clock rising edge

if (a_error_type in [DATA_ERROR, DATA_AND_PARITY_ERROR]) begin

release p_smp.psl_signal_data[a_sig_idx];

end

if (a_error_type in [PARITY_ERRORS, DATA_AND_PARITY_ERROR]) begin

release p_smp.psl_signal_parity[a_sig_idx];

end

endtask : release_error

Error is generated
Signal force

Signal release

Start force/release tasks

Reset on Safety Critical Event

BUILD RESET CONFIGURE MAIN SHUTDOWN CLEANUP

When critical event is detected

specification might request that

processing is stopped, and reset is

executed

With UVM phases this is straight

forward to execute with rerun of the
reset phase from simple sequence

class reset_on_ded_test_c extends basic_test_c;

...

virtual task main_phase(uvm_phase phase);

if (ded_reset) begin

phase.raise_objection(this);

std::randomize(reset_delay_ns) with {

reset_delay_ns inside {[10:50]};

};

#(reset_delay_ns * 1ns);

phase.drop_objection(this);

phase.jump(uvm_pre_reset_phase::get());

ded_reset = 0;

end

endtask : main_phase

endclass : reset_on_ded_test_c

RUN

Safety Monitor

Safety
Monitor

Sample
signals

Idle
monitor

Check
DUT error

class safety_monitor extends uvm_monitor #(my_transaction);

`uvm_component_utils(safety_monitor)

...

task pre_main_phase (uvm_phase phase);

forever begin

@(posedge dut.reset);

fork

sample_signals();

idle_monitor();

check_dut_error();

join_none

@(negedge dut.reset);

disable fork;

end

endtask: pre_main_phase

endclass: safety_monitor

Continuous events which

needs action in every clock

cycle are monitored in threads

started in pre_main phase

Error Recovery Flow Example

• For realistic modeling recovery flow should use

front door access to the status information

(e.g. APB or AXI transactions)

• This is taking some time, particularly if clock

division is enabled on the interface

• New error can be generated while error recovery

flow is in progress

ERR?

Check Error

Source

IDLE

Take Action

(clear error)

Check if action

is completed

STOP

no

yes

Error recovery flow in progress

Unifying Recovery Flow for all
Agents in Environment

ECC #1

DUT

ECC #3

ECC

Recovery

ECC #2

Unified ECC Recovery Flow

1. Reducing stress on interface transactions

2. Improving sequence predictability

3. Enables atomic approach for ECC recovery

Multiple ECC agents connected to DUT and

each can start recovery flow from its BFM

Only one physical interface for recovery flow

Built-In-Self-Test Verification

BIST logic is used for two main cases

1. Lab testing after chip arrives from fab and before is integrated into final product

2. Test sequence while IC is integrated in the system and in use

Part of Design-for-Testing architecture,

crucial for in-system testing for lifetime reliability

Two general categories of BIST techniques for testing random logic[1]

1. Online BIST: while circuitry is in normal operational mode (mission mode)

2. Offline BIST: when circuitry is not in normal operational mode,

e.g. during power on reset at the engine startup

CHALLENGE

Automotive requirements for IC

operation time is 15+ years !!!

[1] Wang, Laung-Terng, Cheng-Wen Wo, and Xiaoqing Wen.

“VLSI test principles and architectures: design for testability.” (2006).

How to Implement BIST like Safety
Circuitry Check in AI Processor?

• Data flow in the system

• Input memory content is

controllable by the SW

• System configuration is

also controllable by the SW

• Transformation function is

known and defined

• Meaning with predefined input data and selected HW config

we can exactly predict output values from the system
SIGNATURE

Safety Check of AI Processor

Target is to check if circuitry is operational and there

are no stack at faults in the processing pipeline

SIG1 SIG2

AI Processor Scoreboard
• Intentional random errors

must be injected by

hardware itself, and/or from

verification environment

• Error confirmation

mechanism must be in place

in order to verify that ECC

logic is functional

Challenges with Error Injection
to Data Processing Pipeline

• Corruption of some bits is not having an influence on result and signature

• Due to multi-cycle paths and pipelined organization, it might take several
clock cycles for injected error to have an impact on result and signature

• Signal deposit is much more convenient for error injection in this case.
Be mindful about place where error is injected and impacts of
Verilog resolution function !!!

1
6

 b
it

8
 b

it

Agenda

• Functional Safety Introduction

• Standardization

• Error Correction Schemes

• Functional Verification and Functional Safety Verification Challenge

• Verification Methodology for Functional Safety Verification

• Tools

• Procedures

Verification Procedures for
Functional Safety Verification

• Verification Process must be stricter and more formalized to

comply with ISO 26262 requirements

• Verification Procedures needs to be enforced

• Safety procedure is stricter and more documented

compared to usual functional verification approach

• Different mindset is required !!!

• Safety procedure is main point, not documents for internal use

Safety Review Requirements –
Continuous Review Process

• The 5-step sign-off process is implemented with following safety review meetings

1. Test plan review (verif, design, arch, PM)

2. Coverage plan review (verif, design, arch, PM)

3. RTL code review (design team, verif optional)

4. Verification code review (verif team, design optional)

5. Sign off review (verif, design, arch, PM)

o Including RTL code coverage review

oSpecial focus on toggle coverage for all external signals

Initial

phase

Implementation

phase

Finalizing

phase

Meeting Procedures

• All meetings must have recorded meeting reports defining

• When was the meeting

• Who were the participants

• What conclusions are made

• Which action items are defined

• Follow up meetings are organized to track implementation of

defined action items until all action items are not implemented

Example of status tracking sheet

Functional Verification Results 1/2

• Memory ECC

• 44 test for 14 memory instances (3 different memory types)

600 runs in single regression

100 % pass rate

• Functional coverage

• 100 % out of 9746 items for P1 configuration

• 99+ % out of 28940 items for all configurations

• Hardware error injection scenarios on memory ECC

• 18 tests with 98 runs in single regression

100 % pass rate

• 99.98 % out of 4076 coverage items (1 bin not hit)

Functional Verification Results 2/2

• Safety Circuitry of AI processor

• 67 tests with 949 runs in single regression

~100% pass rate

• 20 without error injection

• 9 no output errors expected – data flow checks

• 12 with expected errors due to data manipulation on input memory

content

• 30 tests with random errors injected to pipeline

• 17 directed tests with error injection to critical signals

• Functional coverage

• 99.72% out of 5645 items

(not all software parameter combinations reached in regression run)

Thank You !

www.VeriestS.com

