
Automated Configuration of Verification 
Environments using Specman Macros

Milos Mirosavljevic, Veriest Solutions, Belgrade, Serbia, (milosm@veriestS.com)

Ron Sela, Valens Semiconductors, Hod HaSharon, Israel (ron.sela@valens.com)

Dejan Janjic, Veriest Solutions, Belgrade, Serbia, (dejanj@veriestS.com)

Efrat Shneydor, Cadence Design Systems, Petach Tikva, Israel (efrat@cadence.com)

mailto:milosm@veriestS.com
mailto:ron.sela@valens.com
mailto:dejanj@veriestS.com
mailto:efrat@cadence.com


Introduction
• Problem: increasing ASIC complexity

• More lines of RTL code, more gates and more features

• Higher logic complexity and more configurations

• Goal: achieve highest verification efficiency

• Our solution: Specman macros



HDBaseT® At a Glance (1) 
• Invented and developed by Valens

• Standard for the transmission of HDMI, Ethernet, controls, USB and 
up to 100W of power over a single, long-distance, cable.



HDBaseT® At a Glance (2)



HDBaseT® At a Glance (3)
• Used in audiovisual, consumer electronics, medical and government 

applications, as well as automotive.



HDBaseT® Switch (“T-Switch”) (1)
• 16 x ports with 16+2Gbps per port

• Each port supports HDCP 2.2 and HDCP 1.4 

• HDCP: form of digital protection developed by Intel

• Prevention of copying of audio and video content



HDBaseT® Switch (“T-Switch”) (2)



T-Switch – Verification challenges (1)
• Verification team is composed of members with different levels of experience

• How to ensure that tests can be written and run quickly

• Cover all configuration and stimuli options

• Typical project: lost of boolean

fields whom each engineer should 

be familiar with in order to 

activate the chip and generate the right stimuli



T-Switch – Verification challenges (2)
• Goal: develop an easy to use API which solves all configuration matters under-

the-hood and allows straightforward test creation without too much 
environment background knowledge



T-Switch – Verification solution
• Specman macros – extending e and adding new constructs

• Main advantage – easy to use syntax for test writers

• define as vs define as computed

• define as: replacement code is written in the macro body

• define as computed: macro user writes procedural code which computes
replacement code. Useful when replacement code is not fixed



ADD_STREAM macro (1)
• Used under the pre-defined run()

• Goal: Override old configuration generated automatically, just before the first 
Specman tick (sequences need at least 1 tick to start their body)

• Output: set of rules used by verification environment



ADD_STREAM macro (2)

• Simple usage:



ADD_STREAM macro (3)
• Quickly create desired scenarios:

• Inject HDMI data to the switch port 0 and send this data through the HDCP towards port 
14 and also send it back from port 0 (multicast)

• Inject data with very low bandwidth to the switch ports 0-7, and send this data towards 
ports 8-15

• Macro: 15 lines of code in the test

• Macro instantiation translates to 180 lines of code under the hood: 12x code 
reduction



ADD_STREAM macro (4)



Example scenario – HDMI + HDCP (1)

• Drive video (HDMI) stream from port 0 to ports 1 and 13

• The stream is going through HDCP block in bypass mode (no 
encryption)

• HDCP version in all HDCP blocks is 1.4



Example scenario – HDMI + HDCP (2)



Example scenario – stress test (1)
• Stress test: maximum bandwidth through the chip

• Each port: 16G +2G = 18Gbps

• Total: 288 Gbps

16 Gbps

16 Gbps

16 Gbps

16 Gbps

16 Gbps

16 Gbps

16 Gbps

16 Gbps

2 Gbps

2 Gbps

2 Gbps

2 Gbps

2 Gbps

2 Gbps

2 Gbps

2 Gbps



Example scenario – stress test (2)

• Total of 16 ADD_STREAM macros used

16 Gbps 2 Gbps



Specman macros advantages
• Easier to read – unlike other languages, macro developer defines syntax for end 

user

• Allows designers to create scenarios without Specman knowledge itself

• Macro parameters can be lists of unknown length:

• Simplicity of usage: easier than functions when there are so many inputs

• Function:



Specman macro limitations
• Limitation of 14 input arguments

• Team utilized mechanism of optional arguments to increase number of inputs

• Our case: 14->14+10

• Optional arguments allowed much more versatility in stimuli generation

• Macro simplification: optional arguments default values



Potential improvements
• Make macro more generic – not dependent on the exact environment hierarchy

• Instead of assuming macro is called from the configuration unit, define as 
computed could, using reflection, find where a unit of specific type is 
instantiated, what fields has, and more.



Results
• Macro allowed accelerated verification – tape out on time

• Exhaustive coverage achieved

• Full leverage of the team: juniors and seniors, as well as designers

• Project life span ~ 2.5 years

• 14 different verification engineers

• 7 design engineers who sporadically joined verification

• 185000 registers in ASIC, 480 tests

• Macro used in ~75% of the tests



Results



Thank you!

www.VeriestS.com



Questions?

Proprietary and Confidential

www.VeriestS.com


