Veriest

Formal Verification of a Custom
uController — A Case Study

Elchanan Rappaport,
Formal Verification Tech Lead

mailto:elchananr@veriests.com

Veriest Solutions introduction

= ASIC Engineering company, founded in 2007 Some of our professional services
» Headquartered in Israel, 4 additional sites in Europe ¢ o \/
. °
= ~100 engineers
) Front-end Functional Formal
= Customers: design Verification Verification
» Tierl international Semi companies i
« Start-up companies
.] [|
 EDA companies
Firmware/ FPGA
IP/VIP
; Embedded . Design
« System companies SW Design

J

Veriest

CopyrightVeriest 2019

‘Valens

> Fabless semiconductor company, establishedin > Addressing two major markets:
2006 — Leaderin the proAV market, with more
> Headquarteredin Israel than 90% adoption, thousands of HDBaseT-
— ~350 employees, with four subsidiaries enabled products and millions of chips
worldwide (US, China, Japanand Germany) delivered

— Qualified vendor to the automotive market

> Founderof the @ -DBT" for in-vehicle connectivity

Winner of a 67th Annual Technology & Engineering Emmy Award (2015) for
the “Development and Standardization of HDBaseT Connectivity Technology for .
Commercial and Residential HDMI/DVI Installation”)

CopyrightVeriest 2019

Veriest

Elchanan Rappaport — Formal Verification Tech Lead

» 30+ years Design / Verification

experience

= 15 years Formal Verification experience

= Formal Services for Who’s Who of
Clarke’s 3™ Law: “Any sufficiently advanced

Sem iCOndUCtor | ndUStry technology is indistinguishable from magic.”

J

Veriest

CopyrightVeriest 2019

- All instructions execute in one cycle
No internal regs other than documented

ldealized RISC

PC

RO —Rn

Status
Interrupt Reg?
Timer?

X PC__
)

Documented
Regs

Opcode
Decode &
Execution

ez

CopyrightVeriest 2019

2

Veriest

ldealized RISC — Formal Verification

DUT
1) Remove resets from documented regs,
_ Documented
start at arbitrary reg state Regs
) ' 2
constrain status reg to legal: Opcode

2) Feed identical inputs to DUT and X PC__ Decode &
Golden Model -m» Execution ‘m

3) Clock once
4) Compare

monitor &
compare

Formal proof depth of ALL propertiesis just 1 cycle! Untimed Golden
This is complete verification of DUT! Model

CopyrightVeriest 2019

!

I

Veriest

Multi-Phase Execution

But in the real world, each instructions take

multiple phases to execute. (e.g. fetch, decode, fotch Inst
execute, store) A
- Bad for CPU performance
- For us —not so bad. decode
- We'd just make sure to always start on
the first phase, and we’'d have a execute
maximum Formal proof depth of 4,
which still isn’t bad. store

v

- Design solution: pipeline execution phases.

- This creates additional undocumented
internal registers to keep track of pipeline
control and interim results.

- (e.g. which inst is currently in which phase)

CopyrightVeriest 2019

Veriest

Pipelined Execution — internal regs

DUT

- Need additional internal registers to keep
_ _ _ Documented
track of pipe controland interim results. Regs

- (e.g. “which inst is currently in which phase”)
®0
pcode @&
- Can’tstart from arbitrary reg state «1- Decode &
- Would get inundated with false failures ®Execution @M
- need to ensure that start values for -m» ® BB
internal regs are legal and consistent. ® ®
- Options: monitor &
- A) Work closely with designer to define / compare

constrainlegal internal reg states
- B) Always start from reset — longer Untimed Golden
traces ® Model

J

Veriest

CopyrightVeriest 2019

Pipelined Execution - Phases

- Need to find a phase to key off of — A: reg5=regb+reg’,
i.e. for every executed instruction, B: reg8=reg9 +reg10;
to compare with untimed golden f:clg%g 111 - reg 12 ' reg 13; . e
model on this phase. »ilnst
fetch A
- Typically, this will be the phase that
check
stores back the results.
sample

- For our uController, it’s the “check”
phase. When we’ve reached this execute
phases, it means that all the
predecessors are available.

store

v

J

Veriest

CopyrightVeriest 2019

Pipelined Execution — Stalled Pipe

- Inst B can’t enter check A: reg5=regb +reg7,
phase until the new value of B: reg 8 =reg5 +reg 10;

reg 5 has been calculated. C: regll=regl2+regl3;
cycle0 1 2 3 4

. : inst | inst
- This only happens after inst fetch | A mBS
Ais done with its store ok
phase. chec A
sample A
- Area ripe for control bugs.
execute A B
|
store A

cycles

CopyrightVeriest 2019
10

v

D,

Veriest

When to compare with Golden Model?

- We compare with A: reg5=regb +reg7;

untimed golden model 3 e §1=:<:§gsl+2rfgre1go;l3;

on the check phase. cydeO 1 2 3 4 5 6 7
fotch inst | inst
check B
sample A B
execute A B
store A | B

v

cycles ;
CopyrightVeriest 2019

1 Veriest

12

What to compare with Golden Model?

Comparing ALL documented regs
won’t work.

- e.g.atcycle 6, our untimed
golden model has already
updated reg 8 (the output of inst
B), but the DUT is still 3 cycles
away from doing that.

Only compare those regs which are
predecessors to this instruction.

- e.g.oncycle6, for inst C, we only
compareregs 12 and 13.

We don’t need to worry about
comparing the other regs now. Any
errors will be picked up by the next
instruction which uses the bad reg as a
predecessor.

A: reg5=regb+reg,

B: reg8=reg5+ reg 10;

C: regll=regl2 +reg1l3;

cycle0 1 2 3 4 7
fatch inst | inst
check
sample A
execute A B
store A

cycles

CopyrightVeriest 2019

v

J

Veriest

Predecessor Compare

On “check” phase, compare inst

predecessors with untimed golden
model. Documented
Regs

Exe_

Opcode
Decode &

cution

Y nst@
M

[

CopyrightVeriest 2019
13

Reg
Compare

Untimed
Golden
Model

Veriest

Pre-Fetch

- In order to reduce waiting time from
instruction memory, pre-fetch is
implemented in the design.

- We also need to test that the pre-fetch
block operates correctly.

14

Documented
Regs

Branch

Prediction /
st R

Opcode
Decode &
Exe_cution

ez

CopyrightVeriest 2019

v

Veriest

15

Pre-Fetch - Formal

Save instruction address, and
instruction in pre-fetch-deep
[throw out oldest] cache.

Compare to PC and instruction reg
at check phase for this instruction.

Can’t use regular scoreboard
because some instructions are
fetched but never used.
(incorrect branch prediction)

Documented
Regs

Opcode

Y Inst@
)

Branch
Prediction /
Pre-Fetch

Decode &
Execution

ez

Pre-fetch
deep
Cache

CopyrightVeriest 2019

Compare

2

Veriest

Compiler in Verilog

- Implement “Compiler” in Verilog as part of test environment
- Doesn’t verify real compiler coding, but does verify
compiler architecture
- Limits machine sequences to Compiler Legal.

Opcode
Decode &

Exe

cution

Documented
Regs

ez

Inst (0 Branch
Formal . o
Eng ASM Inst Compiler -m Prediction /
ngines
Pre-Fetch
CopyrightVeriest 2019

16

P -
’/

/

\

: J
\
N\

Veriest

Memory access

Scoreboard memory access instructions

Documented
Regs

Opcode

Branch

-m Prediction /
Pre-Fetch

Exe

Decode &

cution

CopyrightVeriest 2019
17

Scoreboard

Veriest

Full Environment

Documented
Regs

Opcode

Branch
Formal ASM | Compiler dicti
Tnics nst p Prediction /

Pre-Fetch

Exe

Decode &

cution

Scoreboard

<_

Pre-fetch

deep
Cache

CopyrightVeriest 2019
18

Compare

Reg
Compare

Untimed
Golden
Model

Veriest

19

Pre-Fetch Compare

// Store in the table
always @ (posedge clk or negedge reset n)
if (!reset_n)
begin
wptr <= 0;
for (int loop=0; loop<IFETCH TABLE SIZE; loocp+t)
ifetch table[loop] <= 0;
end
else if (opcode_ack_sl)
// This is the cycle when opcode_din is wvalid.
begin
ifetch_ﬁable[wptr] <= {1'bl, opcode_gdd_;l, vl_pctrl.opcode_gin};
wptr <= wptr + 1;
end

// now check that we don't execute anything we didn't fetch
// We're no longer on the opcode interface.
// Now we're inside the pipe, at the chk_vld phase
logic found opcode_in table;
always @(*)
begin

found opcode in table = 0;
for {(int loop=0; (loop < IFETCH TABLE SIZE) && (found opcode_in table==0); loop++)

// 81 bits - this checks both the address and the opcode line
if (ifetch table[loop] == {1'bl, vl ucCtrl.vl ucCtrl base.chk data})

found opcode_in table = 1;
end

// Has the opcode (with address) that we're seeing been fetched?
AST_opcode_fetched: assert property (@ (posedge clk) wvl_uCtrl.vl uCtrl base.chk_vld |-> found opcode_in table);

CopyrightVeriest 2019

Veriest

ldentify Predecessors

always @(x)
begin
/f defaults
sreg_pred = 0;

case (chk.opc)
3: // ADDSUB
case (chk.indirect)
0, 2, 4, 6: sreg_pred = 1;
default: ;
endcase
4. /7 MULT
case (chk.indirect)
0, 2: sreg_pred = 1;
default: ;
endcase
5: // Logic Operation
case (chk.indirect)
0, 1, 2, 3: sreg_pred = 1;
default: ;
endcase
T: // Shift and Rotate
case (chk.indirect)
8, 9,10, 11, 13, 15: sreg_pred = 1;
default: ;
endcase
default: ;
endcase // case (chk.op)

end // always @ (x) 4441/)

CopyrightVeriest 2019

20 Veriest

Compare Predecessors

// check Program Counter - for every opcode

AST pc: assert property (€ (posedge clk)
vl uCtrl.vl uCtrl base.chk vld |[-> vl uCtrl.vl uCtrl base.chk data[79:64] == g pc);

// Check DREG

AST dreg pred: assert property (€ (posedge clk)
vl uctrl.vl ucCtrl base.chk vld && dreg pred |-> chk_dreg == g_reg_ array[chk.dreg_index]);

// Check SREG

AST sreg pred: assert property (€ (posedge clk)
vl uCctrl.vl ucCtrl base.chk vld && sreg pred |-> chk_sreg == g_reg_array[chk.sreg_index]);

CopyrightVeriest 2019

21 Veriest

Full Environment

Documented
Regs

Opcode

Branch
Formal ASM | Compiler dicti
Tnics nst p Prediction /

Pre-Fetch

Exe

Decode &

cution

Scoreboard

<_

Pre-fetch

deep
Cache

CopyrightVeriest 2019
22

Compare

Reg
Compare

Untimed
Golden
Model

Veriest

23

Results

- Tested 85 out of 94 Assembler Instructions (ongoing)

bt | 4

Control Timing
Signed Math
Interface

Decode error

1
1
2
4

CopyrightVeriest 2019

4

Veriest

24

Conclusions

- Verification would be easier if designers just created simple designs ©

- Verification can be optimized if designers are willing to work closely with the Formal
team.

- Intelligent reduction of sequence depth is a goal.

- Need to identify when and what to compare to the golden model.
- Opcode testing lends itself to a very structured test environment.

- It’s not just testing opcodes!

- uController designs DO lend themselves to Formal.

CopyrightVeriest 2019

J

Veri“est

Veriest

Thank You!

www.VeriestS.com ‘

c— A

