
Formal Verification of a Custom
uController – A Case Study

Elchanan Rappaport,

Formal Verification Tech Lead

elchananr@veriests.com

mailto:elchananr@veriests.com

2

Veriest Solutions introduction

▪ ASIC Engineering company, founded in 2007

▪ Headquartered in Israel, 4 additional sites in Europe

▪ ~100 engineers

▪ Customers:

• Tier1 international Semi companies

• Start-up companies

• EDA companies

• System companies

Functional

Verification
Formal

Verification

IP/VIP

Design

FPGA

Design

Front-end

design

Firmware/

Embedded
SW

Some of our professional services

Copyright Veriest 2019

3
Copyright Veriest 2019

> Fabless semiconductor company, established in
2006

> Headquartered in Israel

– ~350 employees, with four subsidiaries
worldwide (US, China, Japan and Germany)

> Founder of the

> Addressing two major markets:

– Leader in the proAV market, with more
than 90% adoption, thousands of HDBaseT-
enabled products and millions of chips
delivered

– Qualified vendor to the automotive market
for in-vehicle connectivity

Winner of a 67th Annual Technology & Engineering Emmy Award (2015) for
the “Development and Standardization of HDBaseT Connectivity Technology for

Commercial and Residential HDMI/DVI Installation”

4

Elchanan Rappaport – Formal Verification Tech Lead

▪ 30+ years Design / Verification

experience

▪ 15 years Formal Verification experience

▪ Formal Services for Who’s Who of

Semiconductor Industry
Clarke’s 3rd Law: “Any sufficiently advanced
technology is indistinguishable from magic.”

Copyright Veriest 2019

5

Idealized RISC

PC

Inst
Mem i/f

Opcode
Decode &
Execution

Documented
Regs

- All instructions execute in one cycle
- No internal regs other than documented

- PC
- R0 –Rn
- Status
- Interrupt Reg?
- Timer?

Copyright Veriest 2019

6

Idealized RISC – Formal Verification

Opcode
Decode &
Execution

Documented
Regs

PC

Inst
Mem i/f

Untimed Golden
Model

monitor &
compare

Formal proof depth of ALL properties is just 1 cycle!
This is complete verification of DUT!

1) Remove resets from documented regs,
start at arbitrary reg state
- constrain status reg to legal?

2) Feed identical inputs to DUT and
Golden Model

3) Clock once
4) Compare

DUT

Copyright Veriest 2019

7

Multi-Phase Execution

- But in the real world, each instructions take
multiple phases to execute. (e.g. fetch, decode,
execute, store)

- Bad for CPU performance
- For us – not so bad.

- We’d just make sure to always start on
the first phase, and we’d have a
maximum Formal proof depth of 4,
which still isn’t bad.

- Design solution: pipeline execution phases.
- This creates additional undocumented

internal registers to keep track of pipeline
control and interim results.

- (e.g. which inst is currently in which phase)

inst
A

inst
B

A

inst
C

B

A

A

C

B

B

C

C

cycles

fetch

Copyright Veriest 2019

decode

execute

store

8

Pipelined Execution – internal regs

Opcode
Decode &

Execution

Documented
Regs

PC

Inst
Mem i/f

Untimed Golden
Model

monitor &
compare

DUT

Opcode
Decode &
Execution

Documented
Regs

- Need additional internal registers to keep
track of pipe control and interim results.

- (e.g. “which inst is currently in which phase”)

- Can’t start from arbitrary reg state
- Would get inundated with false failures
- need to ensure that start values for

internal regs are legal and consistent.

- Options:
- A) Work closely with designer to define /

constrain legal internal reg states
- B) Always start from reset – longer

traces

Copyright Veriest 2019

9

Pipelined Execution - Phases

- Need to find a phase to key off of –
i.e. for every executed instruction,
to compare with untimed golden
model on this phase.

- Typically, this will be the phase that
stores back the results.

- For our uController, it’s the “check”
phase. When we’ve reached this
phases, it means that all the
predecessors are available.

inst
A

inst
B

A

inst
C

B

A

A

C

B

A

B

C

B

C

C

cycles

fetch

check

sample

execute

store

A: reg 5 = reg 6 + reg 7;
B: reg 8 = reg 9 + reg 10;
C: reg 11 = reg 12 + reg 13;

Copyright Veriest 2019

6543 21cycle 0 7

10

inst
A

inst
B

A

inst
C

A

A

A

C

cycles

fetch

check

sample

execute

store

Pipelined Execution – Stalled Pipe

A: reg 5 = reg 6 + reg 7;
B: reg 8 = reg 5 + reg 10;
C: reg 11 = reg 12 + reg 13;

B

B

B

B

C

C

C

- Inst B can’t enter check
phase until the new value of
reg 5 has been calculated.

- This only happens after inst
A is done with its store
phase.

- Area ripe for control bugs.

Copyright Veriest 2019

6543 21cycle 0 7

11

CB

inst
A

inst
B

inst
C

A

A

A

A C

cycles

fetch

check

sample

execute

store

When to compare with Golden Model?

A: reg 5 = reg 6 + reg 7;
B: reg 8 = reg 5 + reg 10;
C: reg 11 = reg 12 + reg 13;

B

B

B

C

C

- We compare with
untimed golden model
on the check phase.

Copyright Veriest 2019

6543 21cycle 0 7

12

CB

inst
A

inst
B

inst
C

A

A

A

A C

cycles

fetch

check

sample

execute

store

What to compare with Golden Model?

A: reg 5 = reg 6 + reg 7;
B: reg 8 = reg 5 + reg 10;
C: reg 11 = reg 12 + reg 13;

B

B

B

C

C

- Comparing ALL documented regs
won’t work.

- e.g. at cycle 6, our untimed
golden model has already
updated reg 8 (the output of inst
B), but the DUT is still 3 cycles
away from doing that.

- Only compare those regs which are
predecessors to this instruction.

- e.g. on cycle 6, for inst C, we only
compare regs 12 and 13.

- We don’t need to worry about
comparing the other regs now. Any
errors will be picked up by the next
instruction which uses the bad reg as a
predecessor.

Copyright Veriest 2019

6543 21cycle 0 7

13

Predecessor Compare

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

- On “check” phase, compare inst
predecessors with untimed golden
model.

Copyright Veriest 2019

Reg
Compare

Untimed
Golden
Model

Inst @

Inst

14

Pre-Fetch

Inst @

Inst

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

- In order to reduce waiting time from
instruction memory, pre-fetch is
implemented in the design.

- We also need to test that the pre-fetch
block operates correctly.

Branch
Prediction /
Pre-Fetch

Copyright Veriest 2019

15

Pre-Fetch - Formal

Inst @

Inst

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

- Save instruction address, and
instruction in pre-fetch-deep
[throw out oldest] cache.

- Compare to PC and instruction reg
at check phase for this instruction.

- Can’t use regular scoreboard
because some instructions are
fetched but never used.
(incorrect branch prediction)

Branch
Prediction /
Pre-Fetch

Pre-fetch
deep
Cache

PC & inst

Compare

Copyright Veriest 2019

16

Compiler in Verilog

Inst @

Inst

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

- Implement “Compiler” in Verilog as part of test environment
- Doesn’t verify real compiler coding, but does verify

compiler architecture
- Limits machine sequences to Compiler Legal.

Branch
Prediction /
Pre-Fetch

Copyright Veriest 2019

CompilerASM Inst
Formal
Engines

17

Memory access

Inst @

Inst

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

- Scoreboard memory access instructions

Branch
Prediction /
Pre-Fetch

Copyright Veriest 2019

Scoreboard

18

Full Environment

Inst @

Inst

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

Branch
Prediction /
Pre-Fetch

Copyright Veriest 2019

CompilerASM Inst
Formal
Engines

Inst @ Branch
Prediction /
Pre-Fetch

Pre-fetch
deep
Cache

PC & inst

Compare
Reg

Compare

Untimed
Golden
Model

Scoreboard

19

Pre-Fetch Compare

Copyright Veriest 2019

20

Identify Predecessors

Copyright Veriest 2019

21

Compare Predecessors

Copyright Veriest 2019

22

Full Environment

Inst @

Inst

Mem i/f

Opcode
Decode &
Execution

Documented
Regs

Branch
Prediction /
Pre-Fetch

Copyright Veriest 2019

CompilerASM Inst
Formal
Engines

Inst @ Branch
Prediction /
Pre-Fetch

Pre-fetch
deep
Cache

PC & inst

Compare
Reg

Compare

Untimed
Golden
Model

Scoreboard

23

Results

- Tested 85 out of 94 Assembler Instructions (ongoing)

Copyright Veriest 2019

Bug Type #

Control Timing 1

Signed Math 1

Interface 2

Decode error 4

24

Conclusions

- Verification would be easier if designers just created simple designs ☺

- Verification can be optimized if designers are willing to work closely with the Formal
team.

- Intelligent reduction of sequence depth is a goal.

- Need to identify when and what to compare to the golden model.

- Opcode testing lends itself to a very structured test environment.

- It’s not just testing opcodes!

- uController designs DO lend themselves to Formal.

Copyright Veriest 2019

www.VeriestS.com

Thank You!

